An Online Sequence-to-Sequence Model Using Partial Conditioning
نویسندگان
چکیده
Sequence-to-sequence models have achieved impressive results on various tasks. However, they are unsuitable for tasks that require incremental predictions to be made as more data arrives or tasks that have long input sequences and output sequences. This is because they generate an output sequence conditioned on an entire input sequence. In this paper, we present a Neural Transducer that can make incremental predictions as more input arrives, without redoing the entire computation. Unlike sequence-to-sequence models, the Neural Transducer computes the next-step distribution conditioned on the partially observed input sequence and the partially generated sequence. At each time step, the transducer can decide to emit zero to many output symbols. The data can be processed using an encoder and presented as input to the transducer. The discrete decision to emit a symbol at every time step makes it difficult to learn with conventional backpropagation. It is however possible to train the transducer by using a dynamic programming algorithm to generate target discrete decisions. Our experiments show that the Neural Transducer works well in settings where it is required to produce output predictions as data come in. We also find that the Neural Transducer performs well for long sequences even when attention mechanisms are not used.
منابع مشابه
Seismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملMolecular phylogeny of some avian species using Cytochrome b gene sequence analysis
Veritable identification and differentiation of avian species is a vital step in conservative, taxonomic, forensic, legal and other ornithological interventions. Therefore, this study involved the application of molecular approach to identify some avian species i.e. Chicken (Gallus gallus), Muskovy duck (Cairina moschata), Japanese quail (Coturnix japonica), Laughing dove (Streptopelia senegale...
متن کاملA Mathematical Model for Cell Formation in CMS Using Sequence Data
Cell formation problem in Cellular Manufacturing System (CMS) design has derived the attention of researchers for more than three decades. However, use of sequence data for cell formation has been the least investigated area. Sequence data provides valuable information about the flow patterns of various jobs in a manufacturing system. This paper presents a new mathematical model to solve a cell...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملUsing Multiple-Variable Matching to Identify EFL Ecological Sources of Differential Item Functioning
Context is a vague notion with numerous building blocks making language test scores inferences quite convoluted. This study has made use of a model of item responding that has striven to theorize the contextual infrastructure of differential item functioning (DIF) research and help specify the sources of DIF. Two steps were taken in this research: first, to identify DIF by gender grouping via l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016